Long-period rhythmic synchronous firing in a scale-free network.

نویسندگان

  • Yuanyuan Mi
  • Xuhong Liao
  • Xuhui Huang
  • Lisheng Zhang
  • Weifeng Gu
  • Gang Hu
  • Si Wu
چکیده

Stimulus information is encoded in the spatial-temporal structures of external inputs to the neural system. The ability to extract the temporal information of inputs is fundamental to brain function. It has been found that the neural system can memorize temporal intervals of visual inputs in the order of seconds. Here we investigate whether the intrinsic dynamics of a large-size neural circuit alone can achieve this goal. The network models we consider have scale-free topology and the property that hub neurons are difficult to be activated. The latter is implemented by either including abundant electrical synapses between neurons or considering chemical synapses whose efficacy decreases with the connectivity of the postsynaptic neuron. We find that hub neurons trigger synchronous firing across the network, loops formed by low-degree neurons determine the rhythm of synchronous firing, and the hardness of exciting hub neurons avoids epileptic firing of the network. Our model successfully reproduces the experimentally observed rhythmic synchronous firing with long periods and supports the notion that the neural system can process temporal information through the dynamics of local circuits in a distributed way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simplified memory network model based on pattern formations

Many experiments have evidenced the transition with different time scales from short-term memory (STM) to long-term memory (LTM) in mammalian brains, while its theoretical understanding is still under debate. To understand its underlying mechanism, it has recently been shown that it is possible to have a long-period rhythmic synchronous firing in a scale-free network, provided the existence of ...

متن کامل

Synaptic energy drives the information processing mechanisms in spiking neural networks.

Flow of energy and free energy minimization underpins almost every aspect of naturally occurring physical mechanisms. Inspired by this fact this work establishes an energy-based framework that spans the multi-scale range of biological neural systems and integrates synaptic dynamic, synchronous spiking activity and neural states into one consistent working paradigm. Following a bottom-up approac...

متن کامل

Synchronous neural activity in scale-free network models versus random network models.

Synchronous firing peaks at levels greatly exceeding background activity have recently been reported in neocortical tissue. A small subset of neurons is dominant in a large fraction of the peaks. To investigate whether this striking behavior can emerge from a simple model, we constructed and studied a model neural network that uses a modified Hopfield-type dynamical rule. We find that networks ...

متن کامل

Rhythmic spontaneous activity in the developing avian auditory system.

Microelectrode recordings of spontaneous multiple unit activity were made from nucleus magnocellularis (NM) and nucleus laminaris (NL), second- and third-order nuclei in the chick auditory system, between 14 and 19 d of incubation (E14-E19). Spontaneous firing in E14-E18 embryos occurred in synchronous bursts at periodic intervals. A rhythmic pattern of spontaneous firing was also observed in t...

متن کامل

Network Dynamics and Synchronous Activity in cultured Cortical Neurons

Neurons extracted from specific areas of the Central Nervous System (CNS), such as the hippocampus, the cortex and the spinal cord, can be cultured in vitro and coupled with a micro-electrode array (MEA) for months. After a few days, neurons connect each other with functionally active synapses, forming a random network and displaying spontaneous electrophysiological activity. In spite of their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 50  شماره 

صفحات  -

تاریخ انتشار 2013